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Abstract
Nowadays, the most frequent cancer in women is breast cancer (malignant tumor). If breast cancer is detected at the
beginning stage, it can often be cured. Many researchers proposed numerous methods for early prediction of this Cancer. In
this paper, we proposed feature ensemble learning based on Sparse Autoencoders and Softmax Regression for classification
of Breast Cancer into benign (non-cancerous) and malignant (cancerous). We used Breast Cancer Wisconsin (Diagnostic)
medical data sets from the UCI machine learning repository. The proposed method is assessed using various performance
indices like true classification accuracy, specificity, sensitivity, recall, precision, f measure, and MCC. Simulation and
result proved that the proposed approach gives better results in terms of different parameters. The prediction results
obtained by the proposed approach were very promising (98.60% true accuracy). In addition, the proposed method
outperforms the Stacked Sparse Autoencoders and Softmax Regression based (SSAE-SM) model and other State-of-
the-art classifiers in terms of various performance indices. Experimental simulations, empirical results, and statistical
analyses are also showing that the proposed model is an efficient and beneficial model for classification of Breast
Cancer. It is also comparable with the existing machine learning and soft computing approaches present in the related
literature.

Keywords Breast Cancer · Stacked Sparse Autoencoders · Softmax classifier · Ensemble learning ·
Fine needle aspiration biopsy

Introduction

Breast Cancer and fine needle aspiration biopsy

Breast (carcinoma) Cancer originates in breast tissues and
then spreads to other body parts. As per the various reports,
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this kind of cancer is the second principal cause of cancer
death among women worldwide. It is the most prevalent
cancer as well as life-threatening diseases among women
(if not detected in early stage) [1, 2]. Early screening,
correct detection and diagnosis of Breast Cancer are very
important to improve the survival rates significantly and
to increase chances of recovery. Computer-aided intelligent
and automated diagnosis systems, developed by machine
learning approaches, are important means in the analysis
of breast cancer and it can support medical experts
(oncologists) in the medical decision-making process. Fine
needle aspiration biopsy (FNAB) of the breast is not
only widely accepted as a first-line diagnostic method of
breast lesions but also minimally invasive yet maximally
diagnostic approach [3]. It is an easy, very safe, faster, less
traumatic and cost-effective procedure when compared with
open surgical biopsy. In this procedure, a thin and hollow
needle is inserted into the mass to take a sample of cells
(tissue sample) from an organ or lump (a suspicious area).
Collected samples of cells are then examined (analyzed)
under a microscope [4, 5].
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Related work

Several Machine learning (ML) and soft computing
approaches have been applied in the analysis and classi-
fication of the data acquired from a digitized image of a
fine needle aspirate (FNA) of a breast mass. (e.g. Breast
Cancer Wisconsin (Diagnostic) Data Set). These approaches
include SVMs [5–16], Decision trees [10, 15, 17–19], Ran-
dom forest [15], Artificial neural network (ANN) [6, 14, 20]
(e.g. Probabilistic neural network [21], Multilayer percep-
trons network (MLP) [11, 14, 17, 18], Radial basis function
neural network (RBFNN) [5, 6], Fuzzy rough neural net-
work [20] etc.), Logistic regression [10, 15], Naive Bayes
classifier [17], K-nearest neighbor [6, 14, 15, 17], Mini-
mum Distance Classifier [11], Linear discriminant analysis
[18], kernel-based methods, fuzzy classifiers [22], cluster-
ing algorithms [9], evolutionary computations (e.g. Firefly
Algorithm [23], Genetic algorithm [11, 12, 24], Ant Colony
Optimization [12], simulated annealing [25] and Particle
swarm optimization [12, 24, 26, 27] etc.), Fusion of mul-
tiple classifiers [17], ensemble method, hybrid approach
[15, 16] and Deep learning approaches etc. Sangwook Kim
et al. [28] proposed an stacked architecture model using
Support Vector Machine for Breast Cancer classification.
Ahmed M. Abdel-Zaher et al. [29] proposed Deep Belief
Networks for Breast Cancer Classification and tested on
UCI Breast Cancer Wisconsin (Original) Data Set. J. Xu
et al. [30] applied Stacked Sparse Autoencoder (SSAE) for
Nuclei Detection on Breast Cancer Histopathology Images.
Qi Zhang et al. [31] proposed unified deep learning (DL)
architecture (comprised of the point-wise gated Boltzmann
machine (PGBM) and the restricted Boltzmann machine
(RBM)) for automatically learning features from shear-
wave elastography (SWE) images and for classifying breast
cancer. Several researchers have attempted to apply con-
volutional neural networks to analyze mammograms or
for breast cancer screening [32–37]. M. Mohsin Jadoon
et al. [38] applied convolutional neural network-discrete
wavelet (CNN-DW) and convolutional neural network-
curvelet transform (CNN-CT) for Three-Class Mammo-
gram Classification. S. Agrawal et al. [39] proposed a
Hybrid model of convolutional neural networks and Linear
Classification to Detect of Breast Cancer from Mammo-
gram. K. Liu et al. [40] proposed fully-connected layer
first convolutional neural network (FCLF-CNN) (the fully-
connected layers are embedded before the first convo-
lutional layer). They tested it on both UCI Wisconsin
diagnostic breast cancer (WDBC) database and UCI Wis-
consin breast cancer database (WBCD). The result of this
study proved that the FCLF-CNN outperforms both MLP
and CNN on both structured datasets (WDBC and WBCD
datasets) [40]. Yawen Xiao et al. [41] simulated deep learn-
ing based unsupervised feature extraction approach that

combines stacked autoencoders with support vector machine
(SAE-SVM) and obtained 98.25 % highest predictive accu-
racy on Breast Cancer Wisconsin (Diagnostic) Data Set.

Motivation and this work

The deep neural network (DNN) is the superior approach
[42] not only in the field of computer vision and signal
processing but also in other real-world classification and
prediction applications. Feature Engineering is an important
step in conventional shallow classifiers [43] but the DNNs
automatically learn hierarchies of relevant features directly
from the given raw data. Therefore, DNNs may extend a
potentially superior classifier for the data acquired from
a digitized image of a fine needle aspirate (FNA) of a
breast mass. In stacked sparse autoencoders and softmax
regression based classification model (SSAE-SM model),
the network of stacked sparse autoencoders decreases
the dimension of feature space and final Softmax layer
is used for classification. The training of the SSAE-
SM model involves two phases: the greedy layer-wise
pre-training phase and fine-tuning phase. Greedy layer-
wise pre-training (Unsupervised) is intended to initialize
the DNN and to introduce a useful prior to next fine-
tuning training (supervised) phase. The outermost layer of
the stacked sparse autoencoders network produces most
abstraction representation. This representation is used to
train the final Softmax layer. Many researchers have
successfully applied this DNN for various medical dataset
classifications. Y. Lu, L. Zhang, B. Wang, and J. Yang [44]
proposed a modified model using feature ensemble learning
based on Sparse Autoencoders for image classification.
Unlike SSAE-SM model, this model makes use of all
layers of representations. Motivated by these developments,
V.J.Kadam et. al. [45] proposed feature ensemble learning
based on sparse autoencoders for the automated diagnosis
of the Parkinson’s disease. In this study, we analyzed the
effectiveness of this model for classification of Breast
cancer. Simulation and outcomes of this study indicate that
the proposed model is an efficient and useful model for
classification of Breast Cancer.

The rest of the paper is structured as follows. “Stacked
Sparse Autoencoders and Softmax Regression as classifier
(SSAE-SM model)” briefly explains Stacked Autoencoders
and Softmax layer based Deep Neural Network Classi-
fier (SSAE-SM model). The proposed Feature Ensem-
ble Learning Based on Stacked Sparse Autoencoders and
softmax classifier (FE-SSAE-SM model) for Breast Can-
cer Diagnosis is presented in “Proposed feature ensem-
ble learning based on Stacked Sparse Autoencoders
and Softmmax Regression Model (FE-SSAE-SM model)
for Breast Cancer diagnosis”. “Experiments and results”
describes the UCI WDBC dataset, experimental study, and
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numerical results. “Experiments and results” also includes
performance indices, and different comparisons. Conclu-
sions are presented in “Conclusion”.

Stacked Sparse Autoencoders and Softmax
Regression as classifier (SSAE-SMmodel)

An Autoencoder (consists of an encoder part and a decoder
part) is an Artificial (feed-forward) neural network trained
using unsupervised learning (that applies back-propagation
approach) to replicate the input representation at the
output. This simple learning circuit owns three layers: an
input layer, a hidden (encoding) layer, and a decoding
(output)layer. It tries to learn approximation to the identity
function which forces the hidden (encoding) layer to try
to learn good representations of the inputs (or compressed
knowledge representations of the original input.) While
conceptually simple, Autoencoders play a fundamental role
in Deep architecture [46–49].

Sparse Autoencoder (SA) is an Autoencoder imposed
with sparseness constraints on the all hidden nodes. It
introduces the sparse penalty term.The cost function for
training a Sparse Autoencoder (given by Eq. 1) includes
three terms. The first term is called mean square error which
gives the discrepancy between input x and reconstructed x̂

over the whole training data [50].

E = MSE + (λ × L2RegularizationT erm)

+(β × SparsityRegularizationT erm) (1)

λ = The coefficient for the L2 regularization term.
β = The coefficient for the sparsity regularization term.
The Eq. 2 gives L2 regularization term.

L2RegularizationT erm = 1

2

nl−1∑

l=1

sl∑

i=1

sl+1∑

j=1

(
w

(l)
ji

)2
(2)

Where nl = Number of layers, l = Layer l, sl = Number of
units in l layer, w

(l)
ji = the weight value between node i in

the layer l and node j in layer l + 1. The Eq. 3 gives Sparsity
Regularization Term.

SparsityRegularizationT erm =
s2∑

j=1

KL(ρ‖ρ̂j ) (3)

Where ρ̂j = average activation of hidden node j , ρ

is a sparsity parameter. KL(ρ‖ρ̂j ) is Kullback-Leibler
divergence (between Bernoulli random variable with mean
ρ and a Bernoulli random variable with mean ρ̂j is defined
as

KL(ρ‖ρ̂j ) = (ρ)log

(
ρ

ρ̂j

)
+ (1 − ρ)log

(
1 − ρ

1 − ρ̂j

)
(4)

An effective deep learning method known as Stacked Sparse
autoencoders (SSAE) is a framework in which many such
Sparse autoencoder layers are stacked one after another
to form a deep learning network. The outputs of each
layer are connected to the inputs of each successive layer.
Softmax (classifier) layer is used as the last layer of this
network. Training of this network is performed in two
phases: 1) the unsupervised greedy layer-wise initialization
phase 2) the supervised fine-tuning phase. To suitably
initialize this Stacked Sparse autoencoder based deep neural
network and to introduce a useful prior to next fine-tuning
training (supervised) phase, the unsupervised greedy layer-
wise algorithm (proposed by Hinton [51, 52]) trains the
first sparse autoencoder to minimize the reconstruction error
of the raw data, followed by training subsequent sparse
autoencoder with the hidden activations of previous sparse
autoencoder as input. Then, the last hidden activations
are taken as input to train a softmax layer. This greedy
layer-wise pre-training sets the stage for a final fine-
tune training phase [53]. Finally, the algorithm fine-tunes
all parameters of this stacked sparse autoencoder-softmax
classifier with the supervised mode for achieving a more
specific task. Figure 1 shows SSAE-SM model (Stacked
Sparse Autoencoder and Softmax classifer model with two
Sparse Autoencoder layers and final softmax layer).

Softmax regression

Softmax (SM) regression classifier, another log-linear model,
the superior variant of the logistic regression, is multinomial
logistic regression. It is a generalized form (or an extension)of
logistic regression to the case where class labels can take more
than two possible values and the classes are mutually exclu-
sive. In other words, It is Multi-class Logistic Regression.
A softmax classifier (which is trained on provided train-
ing data) calculates a separate decimal probability for every

Training Data

FS1

Input Layer Output Layer

Hidden Layer

Input Layer Output Layer

Hidden Layer FS2 SM
SAE1 SAE2

Fig. 1 Stacked sparse Autoencoders - Softmax classifier based model (SSAE-SM model) with two SAEs and Last SM layer [SAE-Sparse
Autoencoder, FS-Feature Space, SM-Softmax layer]
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possible class with the target class having the highest prob-
ability and the decimal probabilities all add up to one. This
is the main advantage of using Softmax classifier.

Proposed feature ensemble learning based
on Stacked Sparse Autoencoders
and Softmmax RegressionModel
(FE-SSAE-SMmodel) for Breast Cancer
diagnosis

As discussed above, In stacked sparse Autoencoders-softmax
classifier based model (SSAE-SM model), the representation
given by the last layer of stacked autoencoders is provided
to softmax layer for classification. However, we obtain
multiple representations when we train stacked sparse
autoencoder based DNN. As discussed by Y. Lu et al. [44]
and Kadam et al. [45], to take benefits from representations
of all layers, we can integrate them by training different
classifiers and apply some combination rule to take the final
decision. In this study, As discussed by V.J. Kadam et al.
[45], We trained two sparse Autoencoders to produce two
representations. Training of first stacked sparse autoencoder
producers first representation. The output of the hidden
layer (i.e. first representation) of first sparse autoencoder
is provided as input to second sparse autoencoder to get
the second representation. Again, We concatenated these
two representations to form the third representation. We
trained three Softmax classifiers corresponding to these

three representations. It should be noted that, for the first
(even is shallow network) and second classifiers, we require
to do fine tuning on the whole network including the input
data layer, feature representation layer, and final Softmax
layer to enhance the performance. Figures 2 and 3 show
proposed FE-SSAE-SM model.

The Training steps are given below (see Fig. 2):

• Step 1:-

– Train SAE1 with HS1 hidden units on training
dataset x. Hidden layer of SAE1 transforms x
into features set FS1.

– Train SAE2 with HS2 hidden units on training
feature set FS1. Hidden layer of SAE2
transforms FS1 into features set FS2.

– Train SM2 on the features set FS2.
– Fine tune whole network SAE1, SAE2, and

SM2.

• Step 2:-

– Apply input data x to SAE1 to get the feature
set FS1.

– Train SM1 on the features set FS1.
– Fine tune whole shallow network SAE1 and

SM1.

• Step 3:-

– Apply input data x to SAE1 to get feature set
FS1

Training Data

FS1

Input Layer Output Layer

Hidden Layer

Input Layer Output Layer

Hidden Layer
SAE1 SAE2

FS1

FS1 FS2

FS2

Concatenation

FS3

SM1 SM3 SM2

Fig. 2 Overview of training phase of proposed Feature Ensemble Learning Based on Stacked Sparse Autoencoders and Softmax regression model
(FE-SSAE-SM model) [SAE-Sparse Autoencoder, FS-Feature Space, SM-Softmax classifier]
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Testing Data

FS1

Input Layer

Hidden Layer

Input Layer

Hidden Layer
SAE1 SAE2

FS1

FS1 FS2

FS2

Concatenation

FS3

SM1 SM3 SM2

Naive Bayes
Combination

Class

Fig. 3 Overview of testing phase of proposed Feature Ensemble Learning Based on Stacked Sparse Autoencoders and Softmax regression model
(FE-SSAE-SM model) [SAE-Sparse Autoencoder, FS-Feature Space, SM-Softmax classifier]

– Apply feature set FS1 to SAE2 to get the
feature set FS2.

– concatenate feature set FS1 and feature set FS2
to get the feature set FS3.

– Train SM3 on the features set FS3.

Figure 2 shows the Training phase of proposed method.
In the testing stage, for the ensemble of three softmax
classifiers, we examined the Naive Bayes combination
method. As explained by Ludmila Kuncheva [54], Naive
Bayes combination methods are MAX, MIN and AVG rule
etc. [55]. In this study, we used AVG rule of Naive Bayes
combination method. Let x be new instance for testing, its
class label y takes on k possible values j = 1, 2, ..k, we can
get corresponding prediction probabilities for the softmax
classifier SMn (n = 1, 2, 3 here), denoted as Pnj (x). The
AVG rule for determining the final value of label y is

y = arg max
j∈{1,2,...k}

N∑

n=1

Pnj (x)/N, (5)

Where N = 3 and k = 2 in this case. Figure 3 shows the
testing phase of proposed method.

Experiments and results

Dataset

In this study, we used Breast Cancer Wisconsin (Diagnostic)
medical data sets (WDBC) . It was obtained from the UCI
Machine Learning dataset repository (https://archive.ics.uci.
edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic))
[56]. This dataset was created by Dr. William H. Wolberg,
W. Nick Street and Olvi L. Mangasarian and donated by
Nick Street. The dataset holds 569 records . There are 357
(62.7%) cases of benign breast changes and 212 (37.3%)
malignant breast cancer. Each record consists of ID num-
ber, diagnosis (Dataset label: ‘B’ means benign, ‘M’ means
malignant), and 30 real-valued input features . These 30
features real-valued features are measured from a digitized
image of a fine needle aspirate of a breast mass. They
represent characteristics of the cell nuclei existing in the
image.10 features (1.Radius, 2.texture, 3.Perimeter, 4.Area,
5.Smoothness, 6.Compactness, 7.Concavity, 8.Concave
points, 9.Symmetry and 10. Fractal dimension) estimated
for each cell nucleus [57–59]. The mean value, The mean
of the worst 3 measurements and The standard error of

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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these features were are computed for each image, yielding
a database of 30 real-valued input attributes for 569 cases.
No missing value is present in the dataset.

Performance indices

Performance indices used for evaluation and comparison are
as follows:

Accuracy = T P+T N
T P+FP+T N+FN

× 100%

Sensitivity = T P
T P+FN

× 100%

Specif icity = T N
FP+T N

× 100%

Precision(P ) = T P/(T P + FP)

Recall(R) = T P/(T P + FN)

F − measure = 2 × (P × R)/(P + R)

MCC = T P×T N−FP×FN√
(T P+FP )(T P+FN)(T N+FP )(T N+FN)

Where TP = true positive, FP = false positive, TN =
true negative, and FN = false negative and these values
are derived from Confusion Matrix (Table 1).We used here
two popular and promising indices F measure and Matthews
correlation coefficient (MCC). F measure is defined as
the harmonic mean of classification precision and recall
[60]. Therefore, unlike other indices, the F measure takes
both FP and FN into account [61]. Matthews correlation
coefficient is another important measure of the quality of
binary classifications.Being more balanced index, MCC
estimates a correlation of the classification prediction.

Experimentation

For experimentation purpose, We implemented proposed
Feature ensemble based Stacked autoencoder + soft-
max regression-based model (FE-SSAE-SM) and Stacked
autoencoder and softmax regression-based model (SSAE-
SM model) using Matlab 2018b environment (we used func-
tions like trainAutoencoder, trainSoftmaxLayer and deepnet

Table 1 Confusion matrix of classification

Prediction as malignant Prediction as benign

Actual malignant TP FN

Actual benign FP TN

etc.). Both networks contain two Autoencoders (SAE1 and
SAE2). We tried three combinations on both models:

i) 8 hidden layer neurons in SAE1 and 6 hidden layer
neurons in SAE2

ii) 8 hidden layer neurons in SAE1 and 8 hidden layer
neurons in SAE2

iii) 8 hidden layer neurons in SAE1 and 10 hidden layer
neurons in SAE2

Both models were trained and tested on WDBC dataset.
10-fold cross-validation approach was adopted to eval-
uate the accuracy and compare the efficiency of FE-
SSAE-SM and SSAE-SM model. Training procedures
of SSAE-SM and FE-SSAE-SM are given in “Stacked
Sparse Autoencoders and Softmax Regression as classi-
fier (SSAE-SM model)” and “Proposed feature ensem-
ble learning based on Stacked Sparse Autoencoders
and Softmmax Regression Model (FE-SSAE-SM model)
for Breast Cancer diagnosis” respectively. To find the opti-
mal value of parameters λ, β and ρ for both models, we used
Grid search. Difference values were assigned to regulation
parameters λ, β and ρ to study their effect on accuracy. The
coefficient for the L2 regularization term (λ) in the range
of 0.005 to 8, Sparsity Proportion (ρ) in the range of 0.01
to 1, Coefficient for the Sparsity regularization term (β) in
the range of 1 to 10 and Scaled conjugate gradient with max
epoch in the range of 50 to 600 (for all Autoencoders and
all softmax classifiers and fine tuning) were considered for
experimentation. Performance Comparisons between both
model (proposed FE-SSAE-SM and SSAE-SM) in terms of
accuracy, sensitivity, and specificity are provided in Table 2.
FE-SSAE-SM and SSAE-SM models with the best accuracy
are further compared with other state-of-the-art models in
terms of accuracy, sensitivity, specificity, recall, precision, f
measure, and MCC on WDBC dataset using 10 fold cross

Table 2 Performance comparison of FE-SSAE-SM and SSAE-SM (10
fold-cross validation)

Hidden layer size Model Accu- Sens- Speci-

of SAE1 SAE2 racy ivitiy ficity

8-6 FE-SSAE-SM 98.60 97.16 99.44

SSAE-SM 98.25 96.69 99.16

8-8 FE-SSAE-SM 98.59 97.19 99.436

SSAE-SM 98.07 96.21 99.16

8-10 FE-SSAE-SM 98.59 96.71 99.71

SSAE-SM 98.07 96.71 98.88

Bold emphasis indicates Best performance
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Table 3 Performance Comparison of the proposed FE-SSAE-SM with other classifiers (10 fold-CV)

Classifier Accuracy Sensitivity Specificity Precision Recall f measure MCC

Decision Trees [Split criterion = Gini’s diversity index]

Coarse Tree [max. number of splits = 4] 93.322 91.038 94.678 0.91 0.91 0.91 0.857

Medium Tree [max. number of splits = 20] 93.322 91.509 94.398 0.907 0.915 0.911 0.857

Fine Tree [max. number of splits = 100] 93.322 91.509 94.398 0.907 0.915 0.911 0.857

Linear Discriminant [Covariance structure = Full] 95.431 88.679 99.44 0.989 0.887 0.935 0.903

Quadratic Discriminant [Covariance structure = Full] 95.255 94.34 95.798 0.93 0.943 0.937 0.899

Logistic Regression 95.606 95.755 95.518 0.927 0.958 0.942 0.907

SVM [Box constraint level = 1]

Linear SVM [Linear kernel] 97.715 94.811 99.44 0.99 0.948 0.969 0.951

Quadratic SVM [Quadratic kernel] 97.715 95.283 99.16 0.985 0.953 0.969 0.951

Cubic SVM [Cubic kernel] 97.715 95.755 98.88 0.981 0.958 0.969 0.951

Fine Gaussian SVM [Gaussian kernel,Kernel scale = 1.4] 81.371 50.943 99.44 0.982 0.509 0.671 0.617

Medium Gaussian SVM[Gaussian kernel,Kernel scale = 5.5] 97.188 95.755 98.039 0.967 0.958 0.962 0.94

Coarse Gaussian SVM [Gaussian kernel,Kernel scale = 22] 95.431 88.208 99.72 0.995 0.882 0.935 0.904

KNN [Distance metric = Euclidean, distance weight = Equal]

Fine KNN [Number of neighbors = 1] 95.255 92.453 96.919 0.947 0.925 0.936 0.898

Medium KNN [Number of neighbors = 10] 96.485 91.981 99.16 0.985 0.92 0.951 0.925

Coarse KNN [Number of neighbors = 100] 93.146 82.547 99.44 0.989 0.825 0.9 0.856

Cosine KNN [ Distance metric = Cosine,

distance weight = Equal,Number of neighbors = 10] 96.661 93.396 98.599 0.975 0.934 0.954 0.928

Cubic KNN [Distance metric = Minkowski,

distance weight = Equal,Number of neighbors = 10,] 96.134 91.038 99.16 0.985 0.91 0.946 0.918

Weighted KNN [Distance metric = Euclidean,

distance weight = Squared Inverse, Number of neighbors = 10] 96.837 93.396 98.88 0.98 0.934 0.957 0.932

SSAE-SM [ Hidden layer size of SAE1- SAE2 = 8-6] 98.243 96.698 99.16 0.986 0.967 0.976 0.962

FE-SSAE-SM [Hidden layer size of SAE1 - SAE2 = 8-6] 98.594 97.17 99.44 0.99 0.972 0.981 0.97

validation method. It is given in Table 3 and Figs. 4, 5, and 6.
These classifiers were implemented in Matlab. Parameter
settings are also given in the Table 3.

Because there is no standard evaluation protocol for
WDBC dataset, studies available in the literatures have
adopted different accuracy evaluation protocols, causing

Fig. 4 Comparison of classifiers
in terms of Accuracy,
Sensitivity, and Specificity
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Fig. 5 Comparison of classifiers
in terms of Precision and Recall
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difficulty in comparing and analyzing performance across
these studies. Here, we attempted to compare the perfor-
mance of FE-SSAE-SM model with other studies (Table 4)
whose accuracy evaluation protocols are closest to ours (i.e.
10 fold cross-validation).

Discussion

In this paper, we applied a Feature ensemble learning
method based on stacked Sparse Autoencoders and softmax
regression model on UCI WDBC dataset to classify
Breast Cancer into benign (non-cancerous) and malignant
(cancerous). True accuracy was estimated using 10 fold

Cross-validation method. The proposed model gave 98.60%
true accuracy with hidden layer size 8 and 6 of Autoencoder
1 and Autoencoder 2 respectively and using proper tuning
hyperparameter settings. Highest Sensitivity and Specificity
obtained by the proposed model are 97.19% and 99.71%
respectively. F measure and MCC obtained by the proposed
model are 0.981 and 0.97 respectively. The outcomes of
the study show proposed FE-SSAE-SM model outperforms
SSAE-SM model and many states-of-the-art classifiers.
Comparison of the proposed method and other methods
(Available in the literature) is also presented in the paper.
Proposed FE-SSAE-SM model outperforms many other
existing approaches.

Fig. 6 Comparison of classifiers
in terms of F measure and MCC
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Table 4 Comparison with other methods in the literature on Breast
Cancer Wisconsin (Diagnostic) medical dataset (Results based on
10-fold CV)

Year Method [Reference] Accuracy

2010 ACO-SVM [12] 95.96

2010 GA-SVM [12] 97.19

2010 PSO-SVM [12] 97.37

2011 Self-training [62] 85.12

2011 Random co-training [62] 83.54

2011 Rough co-training [62] 88.63

2012 Naive Bayes(NB) [17] 92.97

2012 Multi-Layer Perception [17] 96.66

2012 Decision tree (J48) [17] 93.14

2012 Instance Based for K-Nearest neighbor [17] 95.95

2012 Sequential Minimal Optimization (SMO) [17] 97.71

2012 Fusion of NB and SMO [17] 97.53

2012 Fusion of MLP and SMO [17] 97.71

2012 Fusion of J48 and SMO [17] 94.90

2012 Fusion of IBK and SMO [17] 97.71

2012 Fusion of SMO, IBK and NB [17] 97.36

2012 Fusion of SMO, IBK and MLP [17] 97.18

2012 Fusion of SMO, IBK, and J48 [17] 97.36

2012 Fusion of SMO, IBK, NB and MLP [17] 97.53

2012 Fusion of SMO, IBK, NB and J48 [17] 97.01

2014 Hybrid of K-means and SVM [9] 97.38

2014 Probabilistic neural network [21] 96.31

2015 Independent component analysis + k-NN [6] 91.03

2015 Independent component analysis + RBFNN [6] 90.49

2015 independent component analysis and ANN [6] 90.50

2015 Independent component analysis + 90.33

SVM (linear) [6]

2015 Independent component analysis + 89.98

SVM (quadratic) [6]

2015 Independent component analysis + 90.86

SVM (RBF Kernel) [6]

2016 PSO-Kernel density estimation [24] 98.45

2016 GA-Kernel density estimation [24] 98.45

2016 Artificial immune 98.00

with semi-supervised learning [63]

2018 AMBFA [23] 98.21

2018 Binary Firefly Algorithm (BFA) [23] 98.17

2018 Affinity Propagation (AP) clustering + BFA [23] 98.54

2018 AP + AMBFA [23] 98.60

2018 Self-Organizing Error Drive (SOED) ANN [14] 96.19

2018 Ensemble of LR + KNN (with SMOTE) [15] 98.32

2018 WAUCE model [16] 97.68

2019 BP neural network [25] 93.9

2019 IGSAGAW + BP neural network [25] 97.5

2019 GAW + BP neural network [25] 95.3

2019 3-NN [25] 92.6

2019 GAW + 3-NN [25] 94.0

Table 4 (continued)

Year Method [Reference] Accuracy

2019 IGSAGAW + 3-NN [25] 95.4

2019 Cost sensitive SVM [25] 92.6

2019 GAW + cost sensitive SVM [25] 94.5

2019 IGSAGAW + cost sensitive SVM [25] 95.7

2019 This Study SSAE-SM 98.25

2019 This Study Proposed FE-SSAE-SM 98.60

Bold emphasis indicates Best performance

Conclusion

Early screening, accurate prediction, and diagnosis of
Breast Cancers are very important. Computer-aided intelli-
gent and automated medical decision support systems based
on machine learning and soft computing methods plays
an important role in the early prediction of breast can-
cer. This paper presents a robust and sound classifier using
Feature ensemble learning based on stacked sparse autoen-
coders and softmax regression to classify widely adopted
WDBC UCI data sets. Principal goal of the proposed study
was to enhance the accuracy of breast cancer classifica-
tion. The experimental outcomes and statistical analyses
point out that introduced ensemble technique performs bet-
ter than ‘Stacked Sparse Autoencoders + Softmax classifier
model’. It also outperforms many machine learning and soft
computing classifer (like SVM, KNN and Decision tree
etc.) Additionally, this approach is also comparable to the
existing techniques available in the related literature. The
experimental results and statistical analyses are pointed out
that this classifier is really beneficial and efficient model for
breast cancer classification.
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